Volume Change Behaviour in Calcitic Soil Influenced with Sulphuric Acid using Artificial Neural Networks
نویسندگان
چکیده
This paper elucidates the methodology of applying artificial neural network model (ANNM) to predict the percent swell of calcitic soil in sulphuric acid solutions, a complex phenomenon involving many parameters. Swell data required for modelling is experimentally obtained using conventional oedometer tests under nominal surcharge. The phases in ANN include optimal design of architecture, operation and training of architecture. The designed optimal neural model (3-5-1) is a fully connected three layer feed forward network with symmetric sigmoid activation function and trained by the back propagation algorithm to minimize a quadratic error criterion. The used model requires parameters such as duration of interaction, calcite mineral content and acid concentration for prediction of swell. The observed strong correlation coefficient (R = 0.9979) between the values determined by the experiment and predicted using the developed model demonstrates that the network can provide answers to complex problems in geotechnical engineering.
منابع مشابه
Modeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملEstimation of Soil Infiltration in Agricultural and Pasture Lands using Artificial Neural Networks and Multiple Regressions
Common methods to determine the soil infiltration need extensive time and are expensive. However, the existence of non-linear behaviors in soil infiltration makes it difficult to be modeled. With regards to the difficulties of direct measurement of soil infiltration, the use of indirect methods toestimate this parameter has received attention in recent years. Despite the existence of various th...
متن کاملEvaluation of loading efficiency of azelaic acid-chitosan particles using artificial neural networks
Objective(s): Chitosan, a biodegradable and cationic polysaccharide with increasing applications in biomedicine, possesses many advantages including mucoadhesivity, biocompatibility, and low-immunogenicity. The aim of this study, was investigating the influence of pH, ratio of azelaic acid/chitosan and molecular weight of chitosan on loading efficiency of azelaic acid in chitosan particles. Mat...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کامل